\begin{tabbing} ecl\_ind(\=$x$;\+ \\[0ex]$k$,${\it test}$.${\it base}$($k$;${\it test}$); \\[0ex]$a$,$b$,${\it rec}_{1}$,${\it rec}_{2}$.${\it seq}$($a$;$b$;${\it rec}_{1}$;${\it rec}_{2}$); \\[0ex]$a$,$b$,${\it rec}_{1}$,${\it rec}_{2}$.${\it and}$($a$;$b$;${\it rec}_{1}$;${\it rec}_{2}$); \\[0ex]$a$,$b$,${\it rec}_{1}$,${\it rec}_{2}$.${\it or}$($a$;$b$;${\it rec}_{1}$;${\it rec}_{2}$); \\[0ex]$a$,${\it rec}_{1}$.${\it repeat}$($a$;${\it rec}_{1}$); \\[0ex]$a$,$n$,${\it rec}_{1}$.${\it act}$($a$;$n$;${\it rec}_{1}$); \\[0ex]$a$,$n$,${\it rec}_{1}$.${\it throw}$($a$;$n$;${\it rec}_{1}$); \\[0ex]$a$,$l$,${\it rec}_{1}$.${\it catch}$($a$;$l$;${\it rec}_{1}$)) \-\\[0ex]$\,\equiv$$_{\mbox{\scriptsize def}}$$\;\;$\=case $x$\+ \\[0ex]o\=f inl($x$) =$>$ ${\it base}$($x$.1;$x$.2)\+ \\[0ex]$\mid$ inr($x$) =$>$ \=case $x$\+ \\[0ex]o\=f inl($x$) =$>$ ${\it seq}$\=($x$.1\+\+ \\[0ex];$x$.2 \\[0ex];ecl\_ind(\=($x$.1);\+ \\[0ex]$k$,${\it test}$.${\it base}$($k$;${\it test}$); \\[0ex]$a$,$b$,${\it rec}_{1}$,${\it rec}_{2}$.${\it seq}$($a$;$b$;${\it rec}_{1}$;${\it rec}_{2}$); \\[0ex]$a$,$b$,${\it rec}_{1}$,${\it rec}_{2}$.${\it and}$($a$;$b$;${\it rec}_{1}$;${\it rec}_{2}$); \\[0ex]$a$,$b$,${\it rec}_{1}$,${\it rec}_{2}$.${\it or}$($a$;$b$;${\it rec}_{1}$;${\it rec}_{2}$); \\[0ex]$a$,${\it rec}_{1}$.${\it repeat}$($a$;${\it rec}_{1}$); \\[0ex]$a$,$n$,${\it rec}_{1}$.${\it act}$($a$;$n$;${\it rec}_{1}$); \\[0ex]$a$,$n$,${\it rec}_{1}$.${\it throw}$($a$;$n$;${\it rec}_{1}$); \\[0ex]$a$,$l$,${\it rec}_{1}$.${\it catch}$($a$;$l$;${\it rec}_{1}$)) \-\\[0ex];ecl\_ind(\=($x$.2);\+ \\[0ex]$k$,${\it test}$.${\it base}$($k$;${\it test}$); \\[0ex]$a$,$b$,${\it rec}_{1}$,${\it rec}_{2}$.${\it seq}$($a$;$b$;${\it rec}_{1}$;${\it rec}_{2}$); \\[0ex]$a$,$b$,${\it rec}_{1}$,${\it rec}_{2}$.${\it and}$($a$;$b$;${\it rec}_{1}$;${\it rec}_{2}$); \\[0ex]$a$,$b$,${\it rec}_{1}$,${\it rec}_{2}$.${\it or}$($a$;$b$;${\it rec}_{1}$;${\it rec}_{2}$); \\[0ex]$a$,${\it rec}_{1}$.${\it repeat}$($a$;${\it rec}_{1}$); \\[0ex]$a$,$n$,${\it rec}_{1}$.${\it act}$($a$;$n$;${\it rec}_{1}$); \\[0ex]$a$,$n$,${\it rec}_{1}$.${\it throw}$($a$;$n$;${\it rec}_{1}$); \\[0ex]$a$,$l$,${\it rec}_{1}$.${\it catch}$($a$;$l$;${\it rec}_{1}$))) \-\-\\[0ex]$\mid$ inr($x$) =$>$ \=case $x$\+ \\[0ex]o\=f inl($x$) =$>$ ${\it and}$\=($x$.1\+\+ \\[0ex];$x$.2 \\[0ex];ecl\_ind(\=($x$.1);\+ \\[0ex]$k$,${\it test}$.${\it base}$($k$;${\it test}$); \\[0ex]$a$,$b$,${\it rec}_{1}$,${\it rec}_{2}$.${\it seq}$($a$;$b$;${\it rec}_{1}$;${\it rec}_{2}$); \\[0ex]$a$,$b$,${\it rec}_{1}$,${\it rec}_{2}$.${\it and}$($a$;$b$;${\it rec}_{1}$;${\it rec}_{2}$); \\[0ex]$a$,$b$,${\it rec}_{1}$,${\it rec}_{2}$.${\it or}$($a$;$b$;${\it rec}_{1}$;${\it rec}_{2}$); \\[0ex]$a$,${\it rec}_{1}$.${\it repeat}$($a$;${\it rec}_{1}$); \\[0ex]$a$,$n$,${\it rec}_{1}$.${\it act}$($a$;$n$;${\it rec}_{1}$); \\[0ex]$a$,$n$,${\it rec}_{1}$.${\it throw}$($a$;$n$;${\it rec}_{1}$); \\[0ex]$a$,$l$,${\it rec}_{1}$.${\it catch}$($a$;$l$;${\it rec}_{1}$)) \-\\[0ex];ecl\_ind(\=($x$.2);\+ \\[0ex]$k$,${\it test}$.${\it base}$($k$;${\it test}$); \\[0ex]$a$,$b$,${\it rec}_{1}$,${\it rec}_{2}$.${\it seq}$($a$;$b$;${\it rec}_{1}$;${\it rec}_{2}$); \\[0ex]$a$,$b$,${\it rec}_{1}$,${\it rec}_{2}$.${\it and}$($a$;$b$;${\it rec}_{1}$;${\it rec}_{2}$); \\[0ex]$a$,$b$,${\it rec}_{1}$,${\it rec}_{2}$.${\it or}$($a$;$b$;${\it rec}_{1}$;${\it rec}_{2}$); \\[0ex]$a$,${\it rec}_{1}$.${\it repeat}$($a$;${\it rec}_{1}$); \\[0ex]$a$,$n$,${\it rec}_{1}$.${\it act}$($a$;$n$;${\it rec}_{1}$); \\[0ex]$a$,$n$,${\it rec}_{1}$.${\it throw}$($a$;$n$;${\it rec}_{1}$); \\[0ex]$a$,$l$,${\it rec}_{1}$.${\it catch}$($a$;$l$;${\it rec}_{1}$))) \-\-\\[0ex]$\mid$ inr($x$) =$>$ \=case $x$\+ \\[0ex]o\=f inl($x$) =$>$ ${\it or}$\=($x$.1\+\+ \\[0ex];$x$.2 \\[0ex];ecl\_ind \\[0ex](\=($x$.1);\+ \\[0ex]$k$,${\it test}$.${\it base}$($k$;${\it test}$); \\[0ex]$a$,$b$,${\it rec}_{1}$,${\it rec}_{2}$.${\it seq}$\=($a$\+ \\[0ex];$b$ \\[0ex];${\it rec}_{1}$ \\[0ex];${\it rec}_{2}$); \-\\[0ex]$a$,$b$,${\it rec}_{1}$,${\it rec}_{2}$.${\it and}$\=($a$\+ \\[0ex];$b$ \\[0ex];${\it rec}_{1}$ \\[0ex];${\it rec}_{2}$); \-\\[0ex]$a$,$b$,${\it rec}_{1}$,${\it rec}_{2}$.${\it or}$\=($a$\+ \\[0ex];$b$ \\[0ex];${\it rec}_{1}$ \\[0ex];${\it rec}_{2}$); \-\\[0ex]$a$,${\it rec}_{1}$.${\it repeat}$($a$;${\it rec}_{1}$); \\[0ex]$a$,$n$,${\it rec}_{1}$.${\it act}$($a$;$n$;${\it rec}_{1}$); \\[0ex]$a$,$n$,${\it rec}_{1}$.${\it throw}$($a$;$n$;${\it rec}_{1}$); \\[0ex]$a$,$l$,${\it rec}_{1}$.${\it catch}$($a$;$l$;${\it rec}_{1}$)) \-\\[0ex];ecl\_ind \\[0ex](\=($x$.2);\+ \\[0ex]$k$,${\it test}$.${\it base}$($k$;${\it test}$); \\[0ex]$a$,$b$,${\it rec}_{1}$,${\it rec}_{2}$.${\it seq}$\=($a$\+ \\[0ex];$b$ \\[0ex];${\it rec}_{1}$ \\[0ex];${\it rec}_{2}$); \-\\[0ex]$a$,$b$,${\it rec}_{1}$,${\it rec}_{2}$.${\it and}$\=($a$\+ \\[0ex];$b$ \\[0ex];${\it rec}_{1}$ \\[0ex];${\it rec}_{2}$); \-\\[0ex]$a$,$b$,${\it rec}_{1}$,${\it rec}_{2}$.${\it or}$\=($a$\+ \\[0ex];$b$ \\[0ex];${\it rec}_{1}$ \\[0ex];${\it rec}_{2}$); \-\\[0ex]$a$,${\it rec}_{1}$.${\it repeat}$($a$;${\it rec}_{1}$); \\[0ex]$a$,$n$,${\it rec}_{1}$.${\it act}$($a$;$n$;${\it rec}_{1}$); \\[0ex]$a$,$n$,${\it rec}_{1}$.${\it throw}$($a$;$n$;${\it rec}_{1}$); \\[0ex]$a$,$l$,${\it rec}_{1}$.${\it catch}$($a$;$l$;${\it rec}_{1}$))) \-\-\\[0ex]$\mid$ inr($x$) =$>$ \=case $x$\+ \\[0ex]o\=f inl($x$) =$>$ ${\it repeat}$\=($x$\+\+ \\[0ex];ecl\_ind \\[0ex](\=$x$;\+ \\[0ex]$k$,${\it test}$.${\it base}$\=($k$\+ \\[0ex];${\it test}$); \-\\[0ex]$a$,$b$,${\it rec}_{1}$,${\it rec}_{2}$.${\it seq}$\=($a$\+ \\[0ex];$b$ \\[0ex];${\it rec}_{1}$ \\[0ex];${\it rec}_{2}$); \-\\[0ex]$a$,$b$,${\it rec}_{1}$,${\it rec}_{2}$.${\it and}$\=($a$\+ \\[0ex];$b$ \\[0ex];${\it rec}_{1}$ \\[0ex];${\it rec}_{2}$); \-\\[0ex]$a$,$b$,${\it rec}_{1}$,${\it rec}_{2}$.${\it or}$\=($a$\+ \\[0ex];$b$ \\[0ex];${\it rec}_{1}$ \\[0ex];${\it rec}_{2}$); \-\\[0ex]$a$,${\it rec}_{1}$.${\it repeat}$\=($a$\+ \\[0ex];${\it rec}_{1}$); \-\\[0ex]$a$,$n$,${\it rec}_{1}$.${\it act}$\=($a$\+ \\[0ex];$n$ \\[0ex];${\it rec}_{1}$); \-\\[0ex]$a$,$n$,${\it rec}_{1}$.${\it throw}$\=($a$\+ \\[0ex];$n$ \\[0ex];${\it rec}_{1}$); \-\\[0ex]$a$,$l$,${\it rec}_{1}$.${\it catch}$\=($a$\+ \\[0ex];$l$ \\[0ex];${\it rec}_{1}$) \-\\[0ex])) \-\-\\[0ex]$\mid$ inr($x$) =$>$ \=case $x$\+ \\[0ex]o\=f inl($x$) =$>$ ${\it act}$\=($x$.1\+\+ \\[0ex];$x$.2 \\[0ex];ecl\_ind \\[0ex](\=($x$.1);\+ \\[0ex]$k$,${\it test}$.${\it base}$\=($k$\+ \\[0ex];${\it test}$); \-\\[0ex]$a$,$b$,${\it rec}_{1}$,${\it rec}_{2}$.${\it seq}$\=($a$\+ \\[0ex];$b$ \\[0ex];${\it rec}_{1}$ \\[0ex];${\it rec}_{2}$); \-\\[0ex]$a$,$b$,${\it rec}_{1}$,${\it rec}_{2}$.${\it and}$\=($a$\+ \\[0ex];$b$ \\[0ex];${\it rec}_{1}$ \\[0ex];${\it rec}_{2}$); \-\\[0ex]$a$,$b$,${\it rec}_{1}$,${\it rec}_{2}$.${\it or}$\=($a$\+ \\[0ex];$b$ \\[0ex];${\it rec}_{1}$ \\[0ex];${\it rec}_{2}$); \-\\[0ex]$a$,${\it rec}_{1}$.${\it repeat}$\=($a$\+ \\[0ex];${\it rec}_{1}$); \-\\[0ex]$a$,$n$,${\it rec}_{1}$.${\it act}$\=($a$\+ \\[0ex];$n$ \\[0ex];${\it rec}_{1}$); \-\\[0ex]$a$,$n$,${\it rec}_{1}$.${\it throw}$\=($a$\+ \\[0ex];$n$ \\[0ex];${\it rec}_{1}$); \-\\[0ex]$a$,$l$,${\it rec}_{1}$.${\it catch}$\=($a$\+ \\[0ex];$l$ \\[0ex];${\it rec}_{1}$) \-\\[0ex])) \-\-\\[0ex]$\mid$ inr($x$) =$>$ \=case $x$\+ \\[0ex]o\=f inl($x$) =$>$ ${\it throw}$\=($x$.1\+\+ \\[0ex];$x$.2 \\[0ex];ecl\_ind \\[0ex](\=($x$.1);\+ \\[0ex]$k$,${\it test}$.${\it base}$\=($k$\+ \\[0ex];${\it test}$); \-\\[0ex]$a$,$b$,${\it rec}_{1}$,${\it rec}_{2}$.${\it seq}$\=($a$\+ \\[0ex];$b$ \\[0ex];${\it rec}_{1}$ \\[0ex];${\it rec}_{2}$); \-\\[0ex]$a$,$b$,${\it rec}_{1}$,${\it rec}_{2}$.${\it and}$\=($a$\+ \\[0ex];$b$ \\[0ex];${\it rec}_{1}$ \\[0ex];${\it rec}_{2}$); \-\\[0ex]$a$,$b$,${\it rec}_{1}$,${\it rec}_{2}$.${\it or}$\=($a$\+ \\[0ex];$b$ \\[0ex];${\it rec}_{1}$ \\[0ex];${\it rec}_{2}$); \-\\[0ex]$a$,${\it rec}_{1}$.${\it repeat}$\=($a$\+ \\[0ex];${\it rec}_{1}$); \-\\[0ex]$a$,$n$,${\it rec}_{1}$.${\it act}$\=($a$\+ \\[0ex];$n$ \\[0ex];${\it rec}_{1}$); \-\\[0ex]$a$,$n$,${\it rec}_{1}$.${\it throw}$\=($a$\+ \\[0ex];$n$ \\[0ex];${\it rec}_{1}$); \-\\[0ex]$a$,$l$,${\it rec}_{1}$.${\it catch}$\=($a$\+ \\[0ex];$l$ \\[0ex];${\it rec}_{1}$) \-\\[0ex])) \-\-\\[0ex]$\mid$ inr($x$) =$>$ ${\it catch}$\=($x$.1\+ \\[0ex];$x$.2 \\[0ex];ecl\_ind \\[0ex](\=($x$.1);\+ \\[0ex]$k$,${\it test}$.${\it base}$\=($k$\+ \\[0ex];${\it test}$); \-\\[0ex]$a$,$b$,${\it rec}_{1}$,${\it rec}_{2}$.${\it seq}$\=($a$\+ \\[0ex];$b$ \\[0ex];${\it rec}_{1}$ \\[0ex];${\it rec}_{2}$); \-\\[0ex]$a$,$b$,${\it rec}_{1}$,${\it rec}_{2}$.${\it and}$\=($a$\+ \\[0ex];$b$ \\[0ex];${\it rec}_{1}$ \\[0ex];${\it rec}_{2}$); \-\\[0ex]$a$,$b$,${\it rec}_{1}$,${\it rec}_{2}$.${\it or}$\=($a$\+ \\[0ex];$b$ \\[0ex];${\it rec}_{1}$ \\[0ex];${\it rec}_{2}$); \-\\[0ex]$a$,${\it rec}_{1}$.${\it repeat}$\=($a$\+ \\[0ex];${\it rec}_{1}$); \-\\[0ex]$a$,$n$,${\it rec}_{1}$.${\it act}$\=($a$\+ \\[0ex];$n$ \\[0ex];${\it rec}_{1}$); \-\\[0ex]$a$,$n$,${\it rec}_{1}$.${\it throw}$\=($a$\+ \\[0ex];$n$ \\[0ex];${\it rec}_{1}$); \-\\[0ex]$a$,$l$,${\it rec}_{1}$.${\it catch}$\=($a$\+ \\[0ex];$l$ \\[0ex];${\it rec}_{1}$) \-\\[0ex])) \-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\\[0ex]\emph{(recursive)} \end{tabbing}